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In this paper, we present a numerical scheme for the analysis of steady-state nonlinear diffusion in random
heterogeneous media. The key idea is to iteratively solve the nonlinear stochastic governing equations via an
inexact Picard iteration scheme, wherein the nonlinear constitutive law is linearized using the current guess of
the solution. The linearized stochastic governing equations are then spatially discretized and approximately
solved using stochastic reduced basis projection schemes. The approximation to the solution process thus
obtained is used as the guess for the next iteration. This iterative procedure is repeated until an appropriate
convergence criterion is met. Detailed numerical studies are presented for diffusion in a square domain for
varying degrees of nonlinearity. The numerical results are compared against benchmark Monte Carlo simula-
tions, and it is shown that the proposed approach provides good approximations for the response statistics at
modest computational effort.
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I. INTRODUCTION

Steady-state nonlinear diffusion equations are an impor-
tant class of partial differential equations �PDEs� which arise
from the mathematical characterization of a variety of diffu-
sion phenomena appearing in nature. Numerical simulations
of such systems are often carried out in a deterministic set-
ting, even though it is recognized that diffusion parameters
and boundary conditions are fraught with considerable ran-
domness. It is now becoming increasingly standard practice
to numerically solve stochastic PDE �SPDE� models of dif-
fusion that employ probabilistic models of uncertain param-
eters in order to rationally quantify variability in predictions.
The problem of steady-state diffusion in random heteroge-
neous media has been studied by many researchers �see, for
example, �1–10�� in the past for its diverse applications in
several areas including heat transfer, petroleum reservoir
characterization, and water resources modeling.

A number of researchers have applied Monte Carlo simu-
lation methods to study diffusion in random heterogeneous
media. Even though Monte Carlo techniques are very general
purpose in scope, the associated computational cost becomes
prohibitive for problems where a fine spatial mesh is re-
quired to resolve the solution characteristics. More efficient
alternatives based on sparse quadrature rules have been em-
ployed in �3,4,11,12�. This approach leverages the regularity
of stochastic variables in contrast to Monte Carlo and quasi-
Monte Carlo schemes. Perturbation methods have also been
widely applied to this problem, but the results are known to
become inaccurate for high degree of variability in the input
parameters; see, for example, �8–10� and references therein.
Tartakovsky et al. �8,9� considered nonlinear flow in random
heterogeneous media, where the nonlinear SPDEs are linear-
ized via the Kirchoff mapping and the response statistics are
subsequently approximated using a first-order perturbation

method. Note that a special form of nonlinearity was consid-
ered which admits linearization using Kirchoff mapping and
more general forms of nonlinearity do not necessarily admit
such a linearization step �13�. There is also a wide body of
literature focusing on stochastic diffusion problems where
white-noise models of diffusivity and boundary conditions
are employed �14,15�. In the present work, we focus on sto-
chastic diffusion problems where the diffusivity is modeled
by a random field with finite variance �i.e., a second-order
stochastic process�.

Projection schemes based on polynomial chaos �PC� ex-
pansions have been employed in �1,5,6�. In this approach, the
SPDE solution is expanded in a PC basis with undetermined
spatially varying coefficients. Galerkin projection is used to
derive a system of coupled deterministic PDEs for the unde-
termined coefficients that are subsequently solved using a
standard numerical PDE solution technique such as finite
element or finite difference methods. For problems with
many random variables, this approach can be computation-
ally expensive since Galerkin projection typically results in a
large system of coupled PDEs. The generalized spectral de-
composition approach was recently proposed in the literature
�16,17� to circumvent this computational issue. Stochastic
reduced basis methods �SRBMs� were proposed in �18,19� to
enable the efficient solution of linear SPDEs by seeking a
solution in a preconditioned stochastic Krylov subspace. Nu-
merical studies have shown that SRBMs offer considerable
computational gains compared to PC projection schemes for
solving linear elliptic SPDEs �20�. Considering that, while
solving a nonlinear SPDE iteratively �irrespective of the it-
erative scheme employed�, a linear SPDE has to be solved at
each step, this advantage can also be leveraged with nonlin-
ear SPDEs.

In the present paper, we focus on the nonlinear stochastic
steady-state diffusion equation, where the diffusivity is pa-
rametrized in terms of a random field with finite memory. We
employ the Picard iteration scheme to linearize the govern-
ing stochastic equations which are subsequently spatially dis-*Corresponding author: p.b.nair@soton.ac.uk

PHYSICAL REVIEW E 79, 046706 �2009�

1539-3755/2009/79�4�/046706�9� ©2009 The American Physical Society046706-1

http://dx.doi.org/10.1103/PhysRevE.79.046706


cretized using a finite element formulation. The linear ran-
dom algebraic system of equations arising at each Picard
iteration is then solved in an inexact sense using SRBMs.
While the focus of the present work is on a model nonlinear
diffusion equation, it is worth noting that our approach is
general in scope and can be applied to a wider class of ellip-
tic SPDEs.

We present detailed numerical studies for a model SPDE
governing diffusion in random heterogeneous media with
nonlinear diffusivity. The results obtained using the proposed
inexact stochastic Picard iterative scheme are compared
against those obtained using a standard Monte Carlo simula-
tion procedure. It is shown that the proposed approach pro-
vides good approximations at a fraction of the computational
effort required for a high-resolution Monte Carlo simulation.

The remainder of this paper is organized as follows. In
Sec. II, we present some preliminary theoretical materials
and describe the model nonlinear diffusion equation studied
in the present work. The detailed formulation of the proposed
numerical scheme is discussed in Sec. III. The computational
and implementation aspects of the proposed approach are
discussed in Sec. IV. In Sec. V, we present a numerical study
on the diffusion equation with stochastic diffusivity. Here we
compare the convergence trends of our numerical scheme for
cases where the diffusivity is modeled as either linear or
�weakly or strongly� nonlinear. We conclude the paper in
Sec. VI and highlight some directions for future research.

II. PROBLEM DEFINITION

In this section we present the problem definition and
prove a theoretical result establishing the existence of a fixed
point for the nonlinear SPDE under consideration. Let
�� ,F ,P� be a probability space, where � is the sample
space, F is the � algebra associated with �, and P is a
probability measure. By definition, L2�� ,F ,P� is a Hilbert
space of random variables. The inner product between two
random vectors u��� and v��� is defined as

„u���,v���… = �u����v���� =� u����v���dP��� ,

where � is a random variable in L2�� ,F ,P�, the superscript
� denotes the complex-conjugate transpose, and �·� denotes

the expectation operator.
Consider the following nonlinear stochastic steady-state

diffusion equation:

� · ���x,u,�� � u�x,��� = f�x,�� in D � � ,

Bu�x,�� = g�x,�� on � D � � , �1�

where f�x ,�� is a random field defined on D�� and g�x ,��
is a random field defined on �D��. D�R�, �=1,2,3, and
�D denotes the physical domain and its boundary, respec-
tively. B is an operator indicating the type of boundary con-
ditions that are imposed, e.g., Dirichlet, Neumann, or mixed
boundary conditions. u�x ,�� is the field variable whose spa-
tial statistics are sought to be computed.

Following Matthies and Keese �3,4�, we model the non-
linear stochastic diffusivity field ��x ,u ,�� as

��x,u,�� = �̂�x,�� + �u2�x,�� , �2�

where �̂�x ,�� is a random field and � is a parameter govern-
ing the degree of nonlinearity.

Before delving into the numerical algorithms for solving
Eq. �1�, it is important to investigate if a solution �fixed
point� indeed exists for the SPDE. In order to theoretically
prove the existence of the fixed point for Eq. �1�, we need to
introduce the following function spaces.

Lp��� space: Let 1� p�� and �� ,F ,P� be as above.
Then the Lp��� space is the set of all measurable functions
from � to R whose absolute value raised to the pth power
has a finite Lebesgue integral or

�f�p = 	� 
f 
pdP�1/p

	 � .

Wp
k�D�: For p
1, Wp

k�D� refers to the set of all functions
u�Lp�D� such that all derivatives of u of orders lesser than
or equal to k belong to Lp�D�.

Now we investigate the appropriate function spaces to
define u and f for the well posedness of problem �1�. In
contrast to the case where the diffusivity is linear, we need to
define the spatial part in a Sobolev space Wp

1�D� with p�2.
Hence u�x ,���Wp

1�D��Lp���. On the other hand f�x ,��
should be in the dual space of Wp

1�D��Lp���, namely, f
�W��D��Lq��� where W��D�=Wq

−1�D� and q is related to
p as 1 / p+1 /q=1.

Since the nonlinearity in Eq. �2� is quadratic in nature, if
p=4, we can define a continuous nonlinear operator �21� on
Wp

1�D��Lp��� as follows:

N = ��̂�x,�� + �u2�x,��� � u�x,��, ∀ u � Wp
1�D� � Lp��� .

Define a semilinear �linear in v� form on Wp
1�D��Lp���

as follows:

a�u,v� =��
D

�v · N�u�dx
, ∀ u, v � Wp
1�D� � Lp��� .

Now consider the variational formulation given by

a�u,v� = L�v�, ∀ u, v � Wp
1�D� � Lp��� , �3�

where the linear form L is defined as

L�v� =��
D

fvdx
 .

The variational formulation �3� has a unique solution for all
f �W��D��Lq��� by the well-known Lax-Milgram lemma
�22� provided that N�u��0. We ensure the positivity of
N�u� by considering the diffusivity to be bounded from be-
low and above, i.e.,

0 	 �min 	 ��x,u,�� 	 �max 	 � .

The stochastic linear component of the diffusivity, i.e., the
term �̂�x ,�� in Eq. �2�, can be ensured to be positive valued
by choosing an appropriate random-field model �e.g., lognor-
mal random field�. The term u2�x ,�� in the diffusivity model
�2� is always positive valued everywhere.
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To justify the application of the Picard iteration scheme,
we first state that the following Dirichlet problem:

� · ���x,u,�� � u�x,��� = f�x,�� in D � � ,

u�x,�� = g�x,�� on � D � � ,

with the nonlinearity model �2� and the assumptions listed
above has a unique fixed point. The interested reader is re-
ferred to the Appendix for a proof of this result.

Theorem: for a given v�Wp
1�D��Lp���, define an opera-

tor T��� by letting u=Tv be the unique solution in Wp
2�D�

�Lp��� of the linear Dirichlet problem,

� · ���x,v,�� � u�x,��� = f�x,�� in D � � ,

u�x,�� = g�x,�� on � D � � , �4�

where f �W��D��Lq��� and g�Wp
1��D��Lp���. Then

T��� has a fixed point.
We model the linear component of the diffusivity by a

lognormal random field, which can be defined by a transfor-
mation of a Gaussian random field Y�x ,�� as

�̂�x,�� = exp�Y�x,��� . �5�

Karhunen-Loève expansion �4,23,24� of a lognormal ran-
dom field results in a set of random variables whose proba-
bilistic structure cannot be easily determined. Ghanem �25�
proposed to discretize the underlying Gaussian random field
Y�x ,�� using the Karhunen-Loève expansion scheme and
then expand the lognormal field in a Hermite PC basis. Using
this approach, the discretized lognormal random field can be
expressed in the form

�̂�x,�� � �
i=0

P1

�̂i�x��i��� . �6�

Here we use the symbol � to denote the vector of uncorre-
lated random variables arising from Karhunen-Loève dis-
cretization of the random fields Y, f , and g,1 and ��i� denotes
a set of Hermite PC basis functions. For simplicity of nota-
tion, we shall henceforth assume that �̂�x ,��, f�x ,��, and
g�x ,�� are statistically independent. We wish to point out
that this assumption is primarily made for notational conve-
nience and to improve clarity of presentation.

Since we assumed that f�x ,�� is a random field on W�

�Lq���, it can also be represented in the general Hermite
PC expansion form2

f�x,�� � �
i=0

Pf

f i�x��i��� . �7�

Before moving on to the spatial discretization of the
model nonlinear SPDE described in this section, we first re-
view the application of generalized SRBMs to solve linear
random algebraic systems of equations.

III. STOCHASTIC REDUCED BASIS METHODS

SRBMs �18,19,27,28� can be applied to solve linear ran-
dom algebraic systems of equations of the form

K���u��� = f��� , �8�

where K��� and f��� are expressed in a PC basis as

K��� = �
i=0

P

Ki�i��� and f��� = �
i=0

P

fi�i��� . �9�

The underlying idea of SRBMs is to approximate the so-
lution vector u��� in Eq. �8� using basis vectors spanning the
preconditioned stochastic Krylov subspace defined as

Km„K���� ,f����… = span�f���� ,K����f���� , . . . ,K����m−1f����� ,

where K���� =MK���, f����=Mf���, and M�Rn�n is a deter-
ministic left preconditioner. In previous studies using
SRBMs �18,27,28�, the matrix K0

−1 was chosen as the pre-
conditioner and this choice has been shown to provide good
convergence. However, here we present a more general deri-
vation which allows the specification of alternative precon-
ditioners that may be required in situations which necessitate
h refinement in the random space to ensure high accuracy
�29�.

A. Basis vector representation

The basis vectors spanning the preconditioned stochastic

Krylov subspace, Km(K���� , f����), can be recursively com-

puted as �0���= f���� and �p+1���=K�����p���, where 1� p
�m−1. The basis vectors ��0��� ,�1��� , . . . ,�m���� are
second-order stochastic processes and hence admit mean-
square convergent representation in a PC basis as a result of
the Cameron-Martin theorem �30�. Hence, the basis vector
�p��� for any p
0 can be approximated as

�p��� = �
i=0

Pu

�i
p�i��� .

Using Eq. �9�, the PC expansion coefficients of �0���
=Mf��� can be written as

�k
0 = Mfk, ∀ 0 � k � P ,

�k
0 = 0, k � P .

Since the �p+1�th basis vector can be written as
�p+1���=MK����p��� for p
0, we have

�p+1��� = �
i=0

P

�
j=0

Pu

MKi� j
p�i� j = �

k=0

Pu

�k
p+1�k.

The undetermined coefficients in the PC expansion, �k
p+1,

can be obtained by projecting them onto the PC basis, which
leads to the following expression:

1Strictly speaking, the random variables appearing in Eq. �6� are
those arising from Karhunen-Loève expansion of Y�x ,�� alone.
However, we group together all random variables arising from
random-field discretization in a single vector for notational
convenience.

2Note that the above representation in a Hermite PC basis is op-
timal only when f�x ,�� is a Gaussian random field. For more gen-
eral distributions, a specially constructed set of orthogonal polyno-
mials may be necessary to ensure optimal convergence �26�.
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�k
p+1 =

�
i=0

P

�
j=0

Pu

MKi� j
p��i� j�k�

��k
2�

,

∀ 0 � k � Pu and p 
 0.

Due to the PC expansion of each basis vector, the
set of basis vectors that approximately span the precondi-
tioned stochastic Krylov subspace ����= ��0��� ,
�1��� ,�2��� , . . . ,�m���� can be compactly rewritten in ma-
trix notation as follows:

���� = �
i=0

Pu

�i�i,

where �i= ��i
0 ,�i

1 ,�i
2 , . . . ,�i

m��Rn��m+1� is a deterministic
matrix.

Thus the stochastic reduced basis representation of the
response vector can be written as

u��� = ����� = 	�
i=0

Pu

�i�i�� , �10�

where �T= �
0 ,
1 ,
2 , . . . ,
m� is a vector of undetermined
deterministic coefficients which can be computed using
Galerkin projection.

B. Stochastic Galerkin projection

Substituting Eqs. �9� and �10� into the linear random al-
gebraic system of Eqs. �8�, we have

��
i=0

P

Ki�i�����̂���� = �
i=0

P

fi�i��� .

The residual vector resulting from the stochastic reduced
basis approximation can be written as

���� = ��
i=0

P

Ki�i�����̂���� − �
i=0

P

fi�i��� . �11�

In order to compute the undetermined coefficients �, we
apply a Galerkin projection scheme where the residual is

made orthogonal to the basis vectors ��̂i����, i.e.,

����� �̂i���, where i=1,2 , . . . ,m+1. Imposing orthogonal-
ity between the stochastic residual and the approximating
space of basis vectors in the L2 sense results in the following
�m+1�� �m+1� reduced-order system of deterministic equa-
tions:

	�
i=0

Pu

�
j=0

P

�
k=0

Pu

�i
TK j�k��i� j�k��� = �

i=0

P�

�i
Tfi��i

2� , �12�

where P�=min�P , Pu�. Typically m≪n where n is the num-
ber of degrees of freedom in the system. Thus the preceding
equations can be efficiently solved for the undetermined co-
efficients �. It is worth noting here that Eq. �12� is equivalent
to a reduced-order model of the equations arising from the

Ghanem-Spanos PC projection scheme �23� that is con-
structed using a set of deterministic basis vectors spanning a
block diagonal preconditioned Krylov subspace.

Note that the response process �10� can be alternatively
written as

u��� = �
i=0

Pu

ui�i, where ui = �i� . �13�

IV. PICARD ITERATION SCHEME

In this section, we present an inexact Picard iteration
scheme that employs SRBMs for solving the model nonlin-
ear SPDE presented in Sec. II. Recall that the linear compo-
nent of diffusivity �̂�x ,�� in Eq. �2� has been represented in
a PC basis in Eq. �6�. We now discuss linearization of the
nonlinear component so that the overall diffusivity is in a PC
basis which in turn facilitates spatial discretization of the
governing equations.

We employ the Picard iteration scheme to linearize the
nonlinear governing equations. Let u0 be an initial guess of
the solution which is assumed to be expanded in a PC basis
without loss of generality as follows3:

u0�x,�� = �
i=0

P0

u0i
�x��i��� .

The nonlinear diffusivity in Eq. �2� is linearized with u0
and then the governing Eq. �1� is spatially discretized. The
linear algebraic systems of equations that arise are solved
using generalized SRBMs presented in Sec. III. The approxi-
mation to the response thus obtained �which is in a PC
basis—see Eq. �13�� is then used to linearize the governing
equations. These equations are spatially discretized and this
iterative cycle is repeated until convergence.

Let the solution at any iterative step be written as v. Then
the next iterate u is computed by solving the following lin-
earized equation:

� · ���x,v,�� � u�x,��� = f�x,�� in D � � ,

Bu�x,�� = g�x,�� on � D � � . �14�

It can be seen that the structure of Eq. �14� is similar to the
linear SPDE considered in �29�. Hence SRBMs can be di-
rectly applied to approximate u.

In brief, the continuum equations are spatially discretized
using finite element approximations resulting in a linear ran-
dom algebraic system of equations represented in a PC basis.
The solution of this system of equations is approximated
using basis vectors spanning the preconditioned stochastic
Krylov subspace, and the current guess is updated to the
response obtained and substituted in Eq. �14�. These steps of
updating the current guess and uncertainty propagation are

3u0 is stochastic if an approximate solution to the nonlinear sys-
tem is known or it can be deterministic, in which case only u00

is
nonzero.
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repeated until an appropriate stopping criterion is met.
In Secs. IV A–IV C that follow, we outline the steps in-

volved in spatial discretization of the linearized governing
equations, computing the stochastic reduced basis approxi-
mation at each iteration, the stopping criterion, and the post-
processing steps.

A. Spatial discretization

A finite element spatial discretization is assumed where
the spatial domain D�R3 is divided into subdomains using a
finite element mesh. Consider a typical finite element De

with shape functions �Ni
e�x���Wh�W defined over its

nodes. Here Wh is a finite element space with the maximum
element diameter h�0. Then the vector representation of the
finite element approximation of the solution over the element
De can be written as

ue�x,�� = Ne�x�ue��� . �15�

Similarly, from the previous iteration, we have the finite el-
ement approximation of the current guess solution v over the
same discretized spatial domain. Substituting these finite el-
ement approximations into the weak form of the governing
equations yields the following expressions for the element
matrices:

Ke��� = �
De

�Ne�x���̂�x,�� + �v2�x,���„�Ne�x�…Tdx ,

fe��� = �
De

f�x,��„Ne�x�…Tdx . �16�

From Eqs. �7� and �16�, the element force vector can be
written as

fe��� = �
De

�
i=0

Pf

f i�x�„Ne�x�…T�i���dx

=�
i=0

Pf ��
De

f i�x�„Ne�x�…Tdx��i��� , �17�

where f i�x� can be approximated over the element De �using
centroid,4 shape function, spatial average, or other approxi-
mations� and the element force vector can be computed using
a quadrature rule �e.g., the Gauss quadrature scheme� of ap-
propriate order. Recall that �̂�x ,�� is already available in a
PC expansion �refer to Eq. �6��. It can be readily seen from
Eq. �16� that once we represent the nonlinear term v2�x ,�� in
a PC basis, the element stiffness matrix can be readily com-
puted.

From the previous iterative step, we have a stochastic
reduced basis approximation of the current guess response
v�x ,�� in form �13�, i.e.,

v�x,�� = �
i=0

Pv

vi�x��i��� . �18�

With v�x ,�� expressed in a PC basis, the term v2�x ,�� can
also be readily written in a PC basis as

v2�x,�� = �
i=0

Pv2

�i�x��i��� , �19�

where �k�x�= �v2�x ,���k� / ��k
2�. Hence from Eqs. �6� and

�19� the diffusivity can be written as

�„x,v�x,��,�… = �̂�x,�� + �v2�x,��

=�
i=0

Pk

��̂i�x� + ��i�x���i��� , �20�

where Pk=max�P1 , Pv2�. Now substituting Eq. �20� into the
expression for the element stiffness matrix �16� leads to

Ke��� = �
i=0

Pk

Ki
e�i��� ,

where

Ki
e = �

De
�Ne�x���̂i�x� + ��i�x��„�Ne�x�…Tdx . �21�

The structure of Eqs. �17� and �21� is similar to equations
for the element matrices that arise when spatially discretizing
linear SPDEs. The functions �f i�x�, �̂i�x�, and �i�x�� can be
approximated over each element using various approxima-
tion techniques, for example, centroid, spatial average, or
shape function based approximations. Assembly of the ele-
ment matrices and incorporation of appropriate boundary
conditions thus lead to a linear random algebraic system of
equations of form �8�, where the global stiffness and force
matrices are given by Eq. �9� �here P
max�Pk , Pf��. The
resulting Eq. �8� is iteratively solved to approximate the re-
sponse statistics.

B. Convergence criterion and numerical issues

We terminate the iterations when the L2 norm of the dif-
ference between the consecutive solutions v��� and u��� is
less than or equal to the user specified tolerance �tol, i.e.,

�u��� − v���� 	 �tol. �22�

The L2 norm in the preceding equation can be simplified
�using orthogonality of PC basis functions� as

�u��� − v���� = ��u��� − v����T�u��� − v�����1/2

=��
i=1

P�

�ui − vi�T�ui − vi���i
2��1/2

,

where P�
max�Pu , Pv�.
In Eq. �8�, note that both the current guess and updated

solutions, namely, v��� and u���, are expanded using

4The value of f i�x� over an element is approximated by its value at
the centroid of the element.
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SRBMs �and PC basis�. Ideally, u��� should be expanded in
a higher-order SRBM basis �and hence a higher-order PC
basis� compared to v��� for numerical stability. But increas-
ing the order of the basis at each iterative step is not com-
putationally feasible. Hence the basis is truncated in real-
world applications which may adversely affect the stability
of the iterative scheme in certain cases. This problem can be
alleviated by using an adaptive approach wherein the number
of stochastic basis vectors is chosen based on the residual
norm �which can be readily estimated, for example, using the
approximation given in Eq. �23�� in the numerical approxi-
mation of Eq. �8�. Alternatively, h-refinement strategies �29�
can be employed to refine the approximation locally in the
probability space so that lower-order global basis vectors can
provide better accuracy. We shall later demonstrate numeri-
cally in Sec. V that the inexact Picard iteration scheme con-
verges satisfactorily for the model problem considered for
various strengths of nonlinearity.

C. Postprocessing

In this section, we derive the first two statistical moments
of the response process. Higher-order moments can be com-
puted similarly. The mean of the response vector is the ex-
pectation of u��� given by Eq. �13�, i.e.,

	u = �u���� =�	�
i=0

Pu

ui�i�
 = u0,

where the RHS is as a result of the property of PC basis
functions, ��i�=0, ∀ i�0 �23�. The covariance of u��� is
given by

Cu = ��u − 	u��u − 	u�T� .

After some algebraic manipulations, the covariance matrix of
the solution vector can be compactly written as

Cu = �
i=0

Pu

uiui
T��i

2� − u0u0
T.

We now show how to estimate the L2 norm of the residual
���� in Eq. �8�. In practice, it would be useful to monitor the
convergence of the full nonlinear residual at each iteration.
This, however, will involve the use of sampling schemes that
would be computationally expensive. The L2 norm of the
residual error of the linear subproblem solved at each Picard
iteration can be computed as

������2
2 = �

i=0

P�

�i
T�i��i

2� , �23�

where

�k =

�
i=0

P

�
j=0

Pu

Kiu j��i� j�k� − fk��k
2�

��k
2�

, �24�

and P�
max�P , Pu� is the order of the PC expansion used
for representing the residual vector. In our numerical studies,

we use the L2 norm of the residual and the true error norm
computed via Monte Carlo simulation to analyze the conver-
gence trends of SRBMs.

D. Treating other types of nonlinearities

In Secs. IV A–IV C, we focused on the additive type of
nonlinearities. SPDEs with more general forms of nonlin-
earities can also be tackled using the proposed numerical
scheme. For example, consider a multiplicative uncertainty
model �8,9,13� where the diffusivity is written in the form

��x,u,�� = �̂�x,��u�x,�� .

Although the above nonlinearity can be linearized by
transforming the field variable using the Kirchoff transfor-
mation �8,9�, it can be alternatively treated using the pro-
posed stochastic Picard iterative scheme. Given a PC basis
representation of both the linear random diffusivity and the
response process as Eqs. �6� and �18�, the nonlinear diffusiv-
ity can be expanded in a higher-order PC basis as follows:

��x,u,�� = �
k=0

P�

�k�x��k,

�k�x� = �
i=0

P1

�
j=0

Pu

�̂i�x�uj�x�
��i� j�k�

��k
2�

,

where P�
max�P1 , Pu�.
The above equation when substituted into the variational

formulation gives rise to a linearized system of equations
from where the procedure follows according to the steps de-
scribed in Secs. IV A–IV C. We wish to highlight here that
the present approach can be readily applied to a wide range
of nonlinear stochastic diffusion problems provided that we
have an accurate PC representation of the constitutive laws.

V. NUMERICAL STUDIES

Consider a square domain defined by D= �0,1�2 with
homogeneous Neumann boundary conditions on the walls
�x=0,x=1� and Dirichlet boundary conditions u=0 and u
=1 on the lower and upper boundaries, respectively. The sto-
chastic diffusivity given by Eq. �2� is nonlinear on the do-
main with no sources or sinks. The linear stochastic compo-

nent of the diffusivity given by k̂�x ,�� is modeled as a
statistically homogeneous lognormal random field with an
isotropic exponential covariance function,

CY�r� = �Y
2 exp�− r/b� ,

where r= 
x−y
 and b is the correlation length. In all the
numerical studies we have set the correlation length b=0.2

and the mean of the lognormal random field �k̂�x ,���=1 and
variance �Y

2 =1. The parameter that controls the degree of
nonlinearity, namely, � in Eq. �2� is set to �=0, 0.1, 0.5, and
1 to represent linear, weak, moderate, and strong nonlinear
diffusivities, respectively. A finite element spatial discretiza-
tion was performed using a mesh of triangular elements with
2763 degrees of freedom and 5528 elements.
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A Monte Carlo simulation with 100 000 samples is first
conducted to generate a set of benchmark results against
which the performance of the inexact stochastic Picard itera-
tion scheme is compared. The underlying Gaussian random
field Y�x ,�� of the lognormal model for the linear diffusivity
term �̂�x ,�� is discretized using the Karhunen-Loève expan-
sion scheme �23� and ten random variables are retained in the
expansion. �̂�x ,�� is then expanded in a second-order Her-
mite PC basis in terms of ten Gaussian random variables. For
all the numerical studies, we start with an initial guess of
zero and the iterations are terminated when the norm given
in Eq. �22� is less than or equal to 10−6. The Monte Carlo
mean and standard deviation are computed from the solu-
tions of these simulations. Note that errors involved in these
simulations are only due to truncated representation of
�̂�x ,�� and not due to the truncation of PC expansions of the
response process.

We now present some error metrics computed by compar-
ing the results generated by Monte-Carol simulation �MCS�
and the proposed numerical approach that employs the Pi-
card iterative scheme in conjunction with SRBMs. We re-
strict the expansion of �̂�x ,�� to a second-order PC basis in
terms of ten Gaussian random variables for all the strengths

of nonlinearities ���. The initial guess is considered to be
zero over the entire spatial domain and the iterations are
terminated when the L2 norm of the difference between suc-
cessive solutions is less than or equal to 10−6. Convergence
is studied for a varying number of SRBM basis vectors
where each stochastic basis vector is truncated to a second-
order PC expansion. For each case, the inexact Picard
scheme takes around 12 iterations to meet the stopping cri-
terion in Eq. �22� with �tol=10−6.

Figure 1 shows four error metrics, namely, relative norm
errors and maximum errors in mean and standard deviation,
respectively. The relative norm error in the mean and stan-
dard deviation are defined as follows:

�� =
��MCS − �SRBM�

��MCS�
,

�� =
��MCS − �SRBM�

��MCS�
.

This figure shows that the numerical scheme provides good
approximations for the response statistics as the number of
basis vectors is increased. The linear problem ��=0� is simi-
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FIG. 1. �Color online� Convergence metrics: �a� ��, �b� ��, �c� maximum percentage error in mean, and �d� maximum percentage error
in standard deviation for different strengths of nonlinearities.

INEXACT PICARD ITERATIVE SCHEME FOR STEADY-… PHYSICAL REVIEW E 79, 046706 �2009�

046706-7



lar to the one dealt in �10�—the errors obtained by employ-
ing SRBMs are considerably small compared to those ob-
tained using perturbation-based moment methods in that
study. Our results also suggest that the errors in the mean and
standard deviation tend to decrease when the strength of non-
linearity is increased. This trend can be attributed to the fact
that the standard deviation of the response decreases with an
increase in the value of � due to the chosen structure for the
nonlinearity model. As a consequence, the proposed stochas-
tic Picard iteration scheme converges to improved approxi-
mations for the mean and standard deviation of the response.

Figure 2 shows the spatial distribution of the percentage
error in standard deviation for the strongly nonlinear case
��=1� when seven basis vectors are employed to approxi-
mate the solution process. It can be seen that the maximum
error in the standard deviation is 3.4% which is remarkable
considering that we set the variance of the diffusivity field
�Y

2 =1.
Theoretically, higher-order PC expansion of basis vectors

would lead to improved approximations at the expense of a
significant increase in computational complexity. In our nu-
merical studies, we did not find any significant increase in
the accuracy of the solutions using higher-order PC represen-
tation of the basis vectors. Hence, we have presented the
results only with second-order PC expansions which agree
well with the benchmark results.

In addition to converging to good approximations, our
approach is orders of magnitude faster than the benchmark
Monte Carlo simulation when the number PC basis functions
is much smaller than the total number of degrees of freedom.
To illustrate, consider the number of floating point operations
required by MCS and SRBM for a two-dimensional elliptic
SPDE spatially discretized on a structured mesh. It can be
shown that MCS will take NsNiterO�n2� floating point opera-
tions, where Ns is the sample size, Niter is the average number
of Picard iterations conducted for each realization of the in-
put random variables, and n is the total number of degrees of
freedom. On the other hand, SRBMs require NiterO�n1.5� to
compute the preconditioner at each inexact Picard iteration

and an additional O�PPu+ PPu
2� matrix-vector operations for

Galerkin projection �see Eq. �12��. In practice if P , Pu≪n,
it is expected that the computational cost of SRBMs will be
orders of magnitude lower than MCS. For the stochastic dif-
fusion problem solved earlier �with n=2763�, SRBMs are
about 800 times faster compared to MCS to obtain the first
two moments with the same level of accuracy which trans-
lates to about 125 deterministic evaluations compared to
100 000 evaluations taken by MCS. We expect the computa-
tional advantages offered by SRBMs to be more dramatic for
problems with more degrees of freedom. However, it is
worth noting that when the underlying random field for the
diffusivity has a small correlation length, the number of
terms in the PC expansion �and random variables arising
from discretization� grows rapidly and this would lead to a
significant increase in the computational complexity of the
proposed approach.

VI. CONCLUDING REMARKS

In this paper, we propose an inexact Picard iteration
scheme for the analysis of nonlinear diffusion processes in
random heterogeneous media. The central idea underpinning
the proposed formulation is to combine the Picard iteration
scheme with generalized stochastic reduced basis methods
that employ basis vectors spanning a preconditioned stochas-
tic Krylov subspace. We show the existence of a fixed point
for a specific nonlinear stochastic diffusion equation. Nu-
merical studies were presented for diffusion in a square do-
main with stochastic diffusivity. Comparison studies have
been conducted for linear and weakly or strongly nonlinear
diffusivity models. The results show that the present numeri-
cal scheme provides good approximations for the response
statistics as the expansion order is increased while taking
significantly less computational time compared to standard
Monte Carlo simulation.

The proposed approach can be enhanced further by em-
ploying adaptive multielement generalizations �29� or by
adaptively increasing the number of stochastic basis vectors
using estimates of the residual norm. It is also of interest to
develop Newton-Raphson-SRBM formulations based on the
ideas presented here since this may provide faster conver-
gence rates. The proposed approach is general in scope and
can be applied to a wide class of nonlinear stochastic elliptic
partial differential equations, for example, deformation
analysis of elastoplastic bodies �31� and steady-state fluid
flow problems. Finally, a theoretical analysis of the conver-
gence of the proposed iterative numerical scheme would be
useful to gain further insights into the convergence charac-
teristics of the stochastic Picard iteration scheme.
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FIG. 2. �Color online� Spatial distribution of percentage error in
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APPENDIX

Proof: To prove that T��� has a fixed point, we use the
well-known Leray-Schauder theorem �22�. This theorem
states that T has a fixed point if it is a compact mapping from
a Banach space Wp

2 �Lp��� into itself and there exists a con-
stant M such that

�u�Wp
2�Lp��� � M, ∀ u � Wp

2 � Lp��� ,

and �� �0,1� satisfying u=�Tu.
We now need to show that the operator T defined earlier

via the linearized problem �4� is continuous and compact. T
maps bounded sets in Wp

1 �Lp��� into bounded sets in Wp
2

�Lp��� by the global Schauder estimate �22� which in turn
are precompact in Wp

2 �Lp��� by Arzela’s theorem. In order

to prove the continuity of T, let �vm� be a convergent se-
quence �converging to v� in Wp

1 �Lp���. Then since the se-
quence �Tvm� is precompact in Wp

2 �Lp���, every subse-
quence in turn has a convergent subsequence. Let �Tv̄m� be
such a convergent subsequence with the limit u�Wp

2

�Lp���. Then since

� · ���x,v,�� � u�x,��� − f�x,��

= lim
m→�

� · ���x, v̄m,�� � Tv̄m�x,��� − f�x,�� = 0,

we must have u=Tv and hence the original sequence �Tvm�
itself converges to u. This concludes our proof that a fixed
point indeed exists for the map T which gives the solution of
the Dirichlet problem given by Eq. �1�. �
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